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ONE METHOD OF CONSTRUCTING POSITIVELY INVARIANT SETS FOR A LORENZ SYSTEM* 

G.A. LEONOV 

An algorithm for constructing positively invariant sets containing 
separatrices which emerge from the singular zero saddle point 0 is 
proposed for a Lorenz system. The domains which contain bifurcation 
curves corresponding to the existence of separatrix loops of the saddle 
0 in Lorenz's system are estimated. From the estimates obtained, in 
particular, it follows that when the Prandtl number approaches infinity 
the area in which there are no separatrix loops from the saddle 0 increases 
without limit. This fact was established earlier for some values of the 
parameters using numerical analysis /l/. In the algorithm proposed here 
we use the ideas discussed in /2-6/. 

It is well-known /7/ that when there are three states of equilibrium 
Lorenz's system can be written in the form (I*,B,A are positive numbers) 

0' = T, q' = -pq - ZIJ - v(u), i' = -AZ - Boq 
cp (0) = - o + 1’6’, B E R’ 

We shall consider the case when B>O. 
We shall take into consideration the continuous functions PO(o)= 1/2Bo2, Qh-(o). Ph- (0 (k 

N) I which satisfy the equations 

Ph_ (0) = 0 
Qh. (0) = p; Vi,' (0) > 0 for p=U 

Y3 E (0, a& 

dP, *P&c 
dJ=Bz-- Vk (3) ' 

\ 3 E (J, a*) 

(11 

1. . . 

(2) 
(3) 

(4) 

(5) 

Here p is some non-negative number, and i-ak, nhl is the maximum interval of definition 
of the solution Qk(5) of Eq.(4) with the initial data (3). It is clear that the solution 

Pk co) of Eq.(5) is also defined in this interval. 
In some cases the equation ok == -!-m can be satisfied for a finite number k. However, we 

can show thatfor farily large values of kak<+ c@. 
Let us further considerthecontinuous functions po (a) = ‘/gB (aN2 - 09, qk (Oi, pk (0) (k = 1. .If,. 

which satisfy the equations 

Ph-(UN) = 0 (6) 
qk (aiY,! = 0. 4,' ("n', z _~ m (7) 

+k 
dJ qk T pqk + $ c5) + Pa-1 (‘) 3 = (‘9 v5 = tak, 4~) (8) 

dp, *P, 
d_= - * - B3- q* (3) ’ Y; E (lk, UN) (9) 

Here [a~,~~] is the maximum interval in which the solution q.$(o) of Eq.(8) with the initial 

data (7) is defined. 
If ar, ~0, we will supplement the definition of the function pk(u) and qk(3) in the folowing 

way: 
Pi; (0) = Pk (ak). qk (0) = 0, yrLT E 10, aiil (10) 

We shall take into consideration the following sets: 
o0 = (Z = co1 (a. q, Z) j z > --‘/@Jo) 
cDk = (z ) i > -Ph (0). ?j < h (a), ~3 E lo. Qkl) 

mk- = (11 Z> -&(I 01 1, I,> -ok (IcI), U= i-QC'ol) 
tpk = (2 / Id Pk (o), q > qii \"). 0 E (0, arulj 
qPk- = (2 1 L $ pk ( 1 0 / ,, ‘1 Q -qo ( I 0 I)> CJ E I--a*,. 0): 

Q = (0, n $.,I) J (oh.- ? $‘n,_J 

Theorem 1. Suppose I qM (o)IG P. Then the set Q is positively invariant. From Theorem 1 

it follows that 
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Theorem 2. suppose p=o,a,>O. Then the separatrix of system (l), which emerges from 

the saddle a= n= z-0, does not vanish as t++CU. 

The following lemmas are required to prove Theorem 1. 

Lemma 1. The set 0, is positively invariant and for any solution z(t) of system (1) the 
following equation holds: 

Proof. It is 

Hence follows 
Note that for 

lim I-(f) > 0 (1. (t) = z (t) + Ii2 Bo (t)*) (14) 
1-x 

clear that 
V (t)' = -AZ (t) = -Al' (t) + 'I,ABo (t)*> -A V (t) 

the estimate r.(l)>e-A* I' (O), from which follows the statement of the lemma. 
Lorenz's sys tern, written in classical form 

II = -01 (t1 - Yl), Y,’ = - 21% + 9 - Y,, 21’ = 1,1/l - bz, (12) 

inequality (11) will take the form 

From this inequality and from V.I. Yudovich's theorem /4, 7/ there follows, in particular, 
the validity of the hypothesis /8/ that lFz,(f)>O as t-$-m and any o,, b,r. 

Lemma 2. The following inequalities hold: 

Pk+, (0) < Pk CD), ok+1 (0) < Qk (Oh y0 E (0, ak+3) 

Proof. From the inequalities p,(;)>o, Q1(u)>O,Vu~(O, a,)and Eq.(5) it follows that P,(a)< 
P,,(o), Vo~(0, ul). Hence using Chaplygin's comparison principle /4/ for Eq.(4) we will obtain 
that Q2 (0) < 9, (a), Vu= (0, a*). But then from (5) there follows the inequality P, (0)~ P,(U), Vu E (0, an), 
from which, again using Chaplygin's principle for Eq.(4), we will obtain the estimate &(a)< 
&(a), YUE (0,~~). Continuing this process further, we obtain the statement of the lemma. 

From Lemma 2 there follow the insertions @k,l c Q)k, ak+l- c @k-. 

Lemma 3. If the relations z(O)= @k,a(t) >O,V~E[O. 7’1 hold for the solution Z(I) of system 

Proof. Bearing in mind the continuous dependence of the solutions on the initial data, 
it is sufficient to show that the following inequalities hold: 

(2 * pk (a))’ > 0, VZ E G, = (2 10 E (0, ak), I + Pk (0) = 0 (13) 
n < Qk co!) 

(11 - Qk C(J))’ < 0, YZ E G, = (I 1 d E (0, ok), I,, --Pk (0) 

? = Qk to)) 

We shall first show that the first inequality (13) holds. When TE G, we have 

(:+ P, (3))' =-AZ - Bsq + Pk'y =AP, + (P,'-Bs)q = AP, 1'1 - &- >(I 

If ZEG*. we have 

(tl - Qk (O))' = --It7 - 2s - F (0) - Qk’q = -,AQk - Qk’Qk - 

‘? (0) - 23 = --d (Pk_1 ((J) + 2) < --Q (Pk (a) + 2) < 0 

The following lemma is proved in a completely analogous way: 

Lemma 4. 
(1) , then 

If the relations z(O)~@k-, o(1)< 0,Vf~ [O. Tl.hold for the solution r(t) of system 
z(t) E ah--. Vf E IO, T]. 

Lemma 5. The following inequalities occur: 

PA+, (0' < Pk (0)~ ‘?k+l (0) > ‘?k (Oh VaE @k,l? +) 

Proof. From the inequalities P1(o)>O, ql(o)<O,VoE (a,.~~) and Eq.(9) it follows that 
P1 (IJ) < PO (0). Yo = (a,, an-). Hence, using Chaplygin's principle for Eq.(8), we obtain that q?(cri> 
ql (')9 " = (% a,+, But then from (9) the inequality pr(a)<P1(s), VOE((I,, aN) follows, from which, 
again using Chaplygin's principle for Eq. (8), we obtain the estimate 
Continuing this process further, 

qS (O) > q? (s), Vu = (as, ON). 
we obtain the statement of the lemma. 

From Lemma 5 there follow the insertions +,k+lCvkr+k+l-~,+k-, 

Lemma 6. If the relations ~(0) E$+. o(f)> 0,Vt~ [O,T] hold for the solution 
Cl), then 0 (f) E $k. Vf E 10, r). 

= (f) of system 

Proof. It is sufficient to prove that the following inequalities hold: 

(2 - Pk (0))' < 0. VI E G,= (r 1 0 E (0, Q-): 2 = Pk ((J), Ij > 4k (0)) (14) 
(rl - '?k ('J))' > 0, VI E G, = 1.~ 1s E (0, aN), 2 < Pi: (O), t) = S’k (O)) (15) 

For k= 0 inequality (14) takes the form --AZ-B~oq+ Bon((1.i.e. it holds when 3 E G,. 
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When I E G, and e E (Q, 

when IE G, 
aN) we have (2 - pk(:))' = --Ai - BOG - pk'q = --APE (I - 4 pk (a)j<O, 

and (r~ (0, ati) if ak> 0) we Will obtain 

(Z--Pk(O))‘= -AZ--Bq<- Apk(Q)<O 

Inequality (14) thus holds. 

When L.EG~ and I? E (Uk, aN) we have 

(11 - ‘lk (O))’ = --Irq - zC3 - (0 (0) - S,.-‘tl = -_I*qk - C,k’qi; - Cp (0) -. Z(T = (T (Pk_, (0) - Z) > 0 (ok (0) - ;, > ” 

and when ZEG‘~ and o~(O,a~) (if ak>O) we will obtain 

(7 - qk (a))’ = -,‘? - z(T - ‘I (0) ,, -pk (a$;) C, - v (0) 2: 0 (-pk (C&k) T 1 - ,X,‘) 

We will show that 

-Pk (ak) + i--yak*>0 

Assuming the opposite, we obtain the inequality 

11' (0, %) < 0 
and from the point 

we draw the trajectory z(~,Q). From (18) and the continuous dependence of the solutions of 

system (1) on the initial data it follows that inequality (16) doss not hold when zEG,.oe 

(cQ,Q~) and for fairly small z-x0. This contradiction also proves Eq.(17). 

Inequality (15) follows from (16) and (17). 

The following lemma is proved in a similar way: 

Lemma 7. If the relations i ((I) E vi;-, n(t) :O.\'f E IO, Tl hold for the solution ~(tj of system 
(1) , then I (f) E $‘h.-, Yf E 10, Ti. 

Theorem 1 follows directly from Lemmas l-7. 

Proof of Theorem 2. When p= O.a,>O the set R is divided into two positively invariant 

sets: R+ = D,\. n qnr and L2- = u)',~- r' T.,~-. It is obvious that in this case the trajectories occurring 

in S2+ and R-cannot approach zero as t- x--, since for fairly small o and IE R' we have the 

inequality o'= q>O.and for fairly small o and ZE 12- the inequality a'= q s< 0 holds. 

On the other hand, the separatrices of system (l), which emerge from the saddle J- ~1, are 

contained either in <I- or in !2-. In fact, in some neighbourhood of the point .z= CI the separatrix 

which emerges intc the halfspace {s) u>O), coincides with the curve whose equation is B) !' (0). 
z = --P (0). Here P(a) and ~(a) is the solution of system 

dP 
+)TIIQ+~(;)-PP;=I~, dj = 

.4P 
Ha- - 

Q 
with the initial data P(O) = 0 (0) : LI. q'(O)> 0. 

It is obvious that P(o) and ~(a) are the limits of the monotonically decreasing (see 

Lemma 2) sequences Ph-(0) and ~,~(a). Hence and from the definition of the set I!- it follows 

that this separatrix will be contained in some neighbourhood of zero in the set !I-. From the 

positive invariance Q- it then follows that this separatrix will be wholly contained in !!-. 

Arguments can be constructed in a similar way for the separatrix emerging into the halfspace 

(z 1 0 < 0). 
Thus, the separatrices lea\,ing the saddle .r Li are contained in I!- and (2. and cannot 

approach zero as t -.+ -;h'. 

We shall now use Theorem 2 in the case when .\ .I! -.- 2.2.;>B. At the same time we wrll 

try to obtain, as far as possible, the simplest analytical condition for there tc be no 

separatrix loops, coarsening the above algorithm for finding 0,; and a,, 

From Eq.(4) and the inequality 2~> B we will find the estimate 

&in, __ li,i;. h, m= -11 2 - (1 ~: ).~'/4j'? 

Using (19)) from Eq.(5) we will find the inequaiity 

u 
p,(; 1 (‘51 c=- 

'+Ati;' 

From Eq.(4) and estimate (201 it follows that a,<%, where y. is a positive 

equation 

i[q ,;,--+I d; = (1 

It is obvious that Y.=[~,(Y- L.))". We shall further assilme that the following 

holds: 
p > 2 [t.; - C),(3) - f)]’ (%I) 

From this it follows that a number K,(O exists, for which the following reiation holds: 

li,% + pL(i,o + 9 (0, - ':,L?o~ + V2Bx20 < 0, Vu E (0, x) 
(“'Li 

This means that q= K,o is a non-contact straight line of Eq.(8) when oe(O.x~. Hence :t 

follows that CQ= o and 
q1 (01 _, K,o, 'SO E IO. a>1 (3, 

(19) 

root of the 

inequalitl 
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From estimate (23) and Eq.(9) it immediately follows that pl(0)= 0. But then for some 
fairly small number 6>0 the inequality cp((~)+p~(u)e<O, YUE (0, 6]holds. Hence, from inequality 
(22) and the estimate pl(a)<po(s) it follows that for fairly small 6 the following inequality 

holds: 
li,? (0 - 6) + pK* (0 - 6) i CF (0) + Pl (4 0 < 0, y (J E (6, a,) 

This means that q= ~~(~-66) is a non-contact straight line for Eq.(8) when o~(6.a~). But 

then a,>6>0. 
Thus, for the conditions of Theorem 2 to hold, it is sufficient that inequality (21) holds. 
For Lorenz's system, written in the standard form (12), this condition will take the 

form 

A= 231-b 

2 + b (>I+ 1)5;*(r - 1)-r (24) 

It is obvious that condition (24) holds when (rl= 10, b=B/s, r< 2. For large values of olrr 
estimate (24) takes the form r < 'i, (00,)"Z. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 
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ON THE SINGULARITY OF THE STRESSES NEAR THE FACE 
IN A PIECEWISE HOMOGENEOUS 

OF A THIN ELASTIC INCLUSION 

PLANE* 

Translated by H.Z. 

D.V. GRILITSKII, A.A. EVTUSHENKO and YU.1. SOROKATYI 

The asymptotic behaviour of normal stresses near the tip of a thin elastic 
inclusion situated near a line weld joining two dissimilar elastic half- 
planes, is studied. It is established that apart from the well-known root- 
type singularity /l/ two additional terms of the asymptotic expression 
exist which must not be neglected. One of them is of the order of unity, 
and the other contains an "imaginary singularity" and makes a singificant 
contribution to the state of stress when the distances between the face of 
the inclusion and the line separating the materials are small. 

1. Normal stresses and their asymptotic behaviour. A thin elastic inclusion 
of normalized length 2 (here and henceforth all distances will be expressed in terms of the 
half-length of the inclusion), is situated in one of the welded isotropichalf-planes possessing 
different elastic characteristics. The distance between the right end of the inclusion and 
the line separating the materials is 6 (Fig.1). A field of tensile stresses o1 and G* exists 
at a sufficient distance from the inclusion, and we have (T* = "I (1 t- x,) p&(1 + e) ~~1, xj = (3 - vj)/(l + 

v1) for the generalized plane stress state, "j= 3-44vj for plane stress, pj is the shear 
modulus and "j is Poisson's ratio of the materials of the half-planes (j= 1.2). The corresponding 
quantities with zero index refer to the material of the inclusion. 
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